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First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion

Ronald Dickman*
Departamento de Fı´sica, ICEx, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, MG, Brazil

~Received 12 February 2001; published 25 June 2001!

A lattice gas with infinite repulsion between particles separated by<1 lattice spacing, and nearest-neighbor
hopping dynamics, is subject to a drive favoring movement along one axis of the square lattice. The equilib-
rium ~zero drive! transition to a phase with sublattice ordering, known to be continuous, shifts to lower density,
and becomes discontinuous for large bias. In the ordered nonequilibrium steady state, both the particle and
order-parameter densities are nonuniform, with a large fraction of the particles occupying a jammed strip
oriented along the drive. The drive thus induces separation into high- and low-density regions in a system with
purely repulsive interactions. Increasing the drive can provoke a transition to the ordered phase, and thereby,
a sharpreductionin current.
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I. INTRODUCTION

The study of simple nonequilibrium lattice hopping mo
els, such as the asymmetric exclusion process~ASEP!, has
blossomed over the past decade, motivated by studies of
fic and of granular matter@1–7#. In parallel, there is continu
ing interest indriven diffusive systems~DDS!: lattice gases
with biased hopping@8–11#, originally proposed as model
of fast ionic conductors~FIC! @12#. These systems exhibit
variety of far-from-equilibrium collective phenomena, su
as synchronization, jamming, and anisotropic phase sep
tion.

In the widely studied case of DDS with attractive neare
neighbor~NN! interactions, application of a driving fieldE
~favoring hopping along one of the principal lattice dire
tions! causes the interface between phases to orient along
field. Since the critical temperature increases withE, the
drive favors ordering. In DDS withrepulsiveNN interac-
tions, which is more pertinent to ionic conduction@13#, or-
dering is generally associated with unequal sublattice oc
pation ~as in antiferromagnetic spin systems!, and one
expects the drive to suppress order. Indeed, the original
theoretic, simulation, and mean-field analyses@14,15#,
showed that antiferromagnetic order is destroyed generic
for a drive E.2J, J being the magnitude of the neares
neighbor interaction. More recent simulations@16,17#, using
larger lattices, strongly suggest that global antiferromagn
order is destroyed byany drive, however small. The obse
vation that FIC materials exhibit phase transitions, even
the presence of repulsive short-range interactions, and g
ing interest in transport in particle systems, motivate inv
tigation of a driven system withhard-corerepulsion.

It will be shown that ordering in the case of infinite r
pulsion is much more robust than for the finite-repulsi
DDS studied previously. While this accords with intuition,
is by no means obvious~one can still envision the finite
domain scenario, as found for finiteJ). Not only does the
ordered state persist under driving, but it exhibits, in addit
to sublattice ordering, a global separation into dense and
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1063-651X/2001/64~1!/016124~9!/$20.00 64 0161
af-

ra-

-

the

u-

ld

lly

ic

n
w-
-

n
i-

lute phases. This spontaneous spatial ordering is some
similar to ‘‘lane-formation’’ or ‘‘flocking’’ phenomena ob-
served in systems of self-propelled agents@18,19#, but here is
intimitely connected with the existence of jammed stat
Increasing the drive can provoke jamming, and thereby
sharp reduction in the current, quite contrary to the us
relation between bias and current.~The system, in other
words, exhibits negative differential resistance in some
gions of parameter space.! The order of the phase transition
moreover, changes as the drive is increased. Thus, one
a variety of surprising collective phenomena in a simple s
tem.

The remainder of this paper is organized as follows. In
next section, I define the model and review its equilibriu
properties. Section III presents simulation results pertinen
the phase diagram, while in Sec. IV, the mechanism of
phase transition is examined, and some results on dyna
are reported. Section V contains a summary and discuss
Several cluster-approximation results cited in the text are
rived in the appendix.

II. MODEL

I study a lattice gas with occupancy of nearest-neigh
sites excluded~NNE!: the distance between any pair of pa
ticles must be.1 lattice spacing; there are no other intera
tions. If we define an energy function on lattice configur
tions so:

E~$s%!5J(
NN

s is j , ~1!

where the sum is over nearest-neighbor pairs,s i50 ~1! in
case sitei is vacant~occupied!, and$s% denotes the particle
configuration, then the NNE model represents theJ→`
limit.

Equilibrium properties of this lattice analog of the har
sphere fluid were studied via series expansion in the 196
leading to the conclusion that~on bipartite lattices! the sys-
tem undergoes a continuous phase transition at a critical
sity rc , to a state with preferential occupancy of one subl
tice; rc.0.37 on the square lattice@20–22#. ~The chemical
©2001 The American Physical Society24-1
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RONALD DICKMAN PHYSICAL REVIEW E 64 016124
potential is the temperaturelike parameter for this entro
driven phase transition, which falls in the Ising universal
class@21#.!

The driven system follows a nearest-neighbor hopp
dynamics. Each particle has an intrinsic rate of 1/4 for h
ping in the6y directions, and ofp/2 and (12p)/2 in the
1x and 2x directions, respectively. Denoting the intrins
hopping rate byP, we have

P~ i , j→ i , j 61!5
1

4
, ~2!

P~ i , j→ i 61,j !5
1

4
6

1

2 S p2
1

2D . ~3!

Thus,p21/2 represents the deviation from equilibrium, wi
p51 corresponding toE→` in standard DDS.~Note, how-
ever, that in the present case, hard-core repulsion alw
takes precedence over the drive.!

I study the driven NNE lattice gas on a square lattice
L2 sites, using periodic boundary conditions in both dire
tions. Initially, N particles are thrown at random onto th
lattice, respecting the NNE condition; this yields a homog
neous, disordered initial configuration.@The random sequen
tial adsorption~RSA! or ‘‘parking’’ process used to generat
the initial state eventually jams, at a mean density of 0.3
@23#. In practice, one can reach densities up to about 0.38
L5100.# In the dynamics, a randomly selected particle
assigned a hopping direction according to the rates gi
above, and the new position is accepted, subject to the N
condition.N such attempted moves define one time unit. A
ter a transient, whose duration depends uponp, L, and the
densityr5N/L2, the system reaches a steady state in wh
the current densityj ~the net flux of particles along the1x
direction per site and unit time!, and other macroscopic prop
erties fluctuate about stationary values. I report results
extensive simulations atp51, 0.75, and 0.6; some studies
p51/2 were also performed to facilitate comparison w
equilibrium. The simulations extend to a maximum time
from ;33106 to ;63107 steps, depending on the tim
required to reach the stationary state.

III. SIMULATION RESULTS: PHASE DIAGRAM

A. Current

To begin the analysis of the driven NNE system, I exa
ine the stationary current densityj. In a lattice gas with only
onsite exclusion (J50), j }(2p21)r(12r). In the present
case, we should again expectj to grow with r at low densi-
ties ~increasing number of carriers! and to decrease at hig
density ~increasing likelihood of blocking by occupie
neighbors!, but the maximum will move tor,1/2, since in
the NNE system, each particle excludes five sites. These
servations are verified in Fig. 1, which showsj (r) for maxi-
mum drive,p51. For r<0.25 there is little dependence o
system size; for the lower range of densities (r<0.1) the
simulation data are in good agreement with a four-site clu
mean-field calculation~see appendix!. But at higher densities
(r50.272, 0.265, and 0.264 forL5100, 150, and 200, re
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spectively!, the current suddenly jumps to a lower value, a
then continues to decrease smoothly with density. These
suggest a discontinuous phase transition~in the L→` limit !
at a densityrc.0.263, far below that of the equilibrium
critical point. Before analyzing the numerical evidence
greater detail, some observations are in order.

First, it is useful to examine a typical particle configur
tion in the high-density, low-current state; Fig. 2 shows su
a snapshot, forp51, r50.267, andL5200, revealing a
strongly nonuniform distribution: a high-density strip h
formed parallel to the drive. Within the strip, all particle
occupy a single sublattice, and their movement is block
The low-density region outside the strip shows no sublat

FIG. 1. Stationary current density versus particle density fop
51 andL550 ~1!, L5100 (s), andL5150 ~diamonds!. Vertical
lines indicate the transition atL5100 ~dotted! andL5150 ~solid!.
Solid curve: four-site MFT.

FIG. 2. Snapshot of particle configuration in stationary statep
51, r50.267,L5200. Filled and open symbols represent partic
on different sublattices. Drive toward the right.
4-2
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FIRST- AND SECOND-ORDER PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E64 016124
ordering, and harbors all the mobile particles.~At first
glance, the boundary between high- and low-density regi
appears to be rough, but systematic studies of its width
function of system size will be required to determine int
face scaling properties.!

A second, related point is that the system exhibitsjammed
states: absorbing configurations in which each particle
blocked from moving by its neighbors~thus, j 50). Such
configurations exist even at very low densities: an exampl
shown in Fig. 3. In practice, however, jammed states are
encountered in simulations for densities less than about 0
for L>150 andp51. In particular, jamming is never ob
served in the vicinity of the transition to the ordered pha
For p51, jamming occurs readily ifr>0.34; in other words,
the drive induces jamming at densities well below the R
limit. A jammed configuration typical of the sort encounter
in simulations is shown in Fig. 4.~Jammed states of the kin
shown in Fig. 3, consisting of a small number of diagon
strips, were never observed in the simulations reported h
for which L>50.! In jammed configurations, all particle
occupy the same sublattice, but the particle density is es
tially uniform, except for empty regions downstream fro
the point where a pair of diagonal rows of particles meet a
right angle. The system can jam forp,1 as well: while
motion against the drive is possible in this case, partic
queue up to form dense configurations whose lifetime gro
exponentially with system size. Forp50.75 andL5100,
jamming occurs at densities above about 0.37.~Note that the
hopping dynamics employed here is reversible forp51/2, so
that the jammed configurations are then inaccessible.!

Jammed configurations are familiar from thetwo species
driven lattice gas, with the two kinds of particle driven
opposite directions~and site exclusion the only interaction!
@24,9#. In that case, jammed states form rather more rea
than in the NNE lattice gas~for large driving fields the re-
quired density is'0.25), and are associated with a~possibly
discontinuous! phase transition. Whether jamming represe
a well-defined phase transition in the driven NNE syst
will be addressed in future work. Here, I concentrate on

FIG. 3. Example of a low-density jammed configuration on
lattice with periodic boundaries. Such configurations are not
countered in simulations forL>50.
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phase transition between twoactivestates, i.e., having a non
zero current. Jamming is nonetheless relevant to the na
of this transition, as discussed below.

Finally, one should note that the two- and four-site clus
mean-field theories~MFT!, derived in the appendix, are s
highly constrained by the NNE condition that the clus
probabilities areindependentof the drivep. Pair MFT pre-
dicts a continuous transition to a sublattice-ordered stat
rc51/4, while the four-site approximation shown in Fig.
givesrc50.2696. But since in equilibriumrc.0.37, the fact
that the kink in the MFT curve falls near the discontinuo
transition should be seen as purely fortuitous. Larger cl
ters, or a spatially extended MFT will be needed to study
driven NNE lattice gas@25#.

B. Order parameter

The phase transition in the NNE lattice gas is signaled
a nonzero order parameter

f5urA2rBu, ~4!

wherer i5Ni /L2, with Ni the number of particles in sublat
tice i.

Data for the stationary current and order parameter
obtained from histograms for the corresponding quantities
the final ~stationary! stage. Near the transition, atp51 and
0.75, the histograms are bimodal~see Fig. 5!.

Figure 6 shows the evolution ofj (t) andf(t) in a single
trial nearrc : the order parameter increases suddenly, afte
long waiting time, and then jumps between high and lo
values. The current mirrors the changes in the order par
eter, since the high value of the latter implies the presenc
a strip of immobile particles.~The time to the onset of or
dering varies from trial to trial, within the range 10523
3106, nearrc , for p51 andL5150.!

-

FIG. 4. Example of a jammed configuration,p51, r50.34, L
5150. Drive toward the right.
4-3
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RONALD DICKMAN PHYSICAL REVIEW E 64 016124
I report in Fig. 7 the stationary order parameter as a fu
tion of density for several values of the drivep. The phase
transition is clearly discontinuous forp>0.75, and continu-
ous forp50.6 and 0.5~equilibrium!. For p50.6 the current
is continuous in the vicinity of the transition~Fig. 8!, and the
system exhibits the hallmarks of a critical point: the variati
of the order parameter withr becomes sharper with increa
ing system size; the histograms are unimodal, becoming v
broad near the transition, so that the variance of the o
parameter shows a sharp peak~Fig. 9!, suggesting thatx
[L2var(f) ~which represents the staggered susceptibility
equilibrium!, will diverge asL→`. Locating thetricritical
point, at which the order of the transition changes, will r
quire more extensive studies; the present results allow on
conclude that the tricritcal drivept lies between 0.6 and 0.75

The transition from the disordered, high-conductiv
state to the ordered, low-conductivity state occurs at low
density, the larger isp. Thus, we may cross the phase boun
ary at fixed density by augmentingp ~Fig. 10!; at this point
the current, paradoxically, falls sharply in response to
increased drive.

FIG. 6. Evolution of the order parameter~lower panel! and cur-
rent density~upper! in a single trial for the same conditions as
Fig. 5.

FIG. 5. Stationary order-parameter histogram,p51, r
50.2715,L5100.
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IV. TRANSITION MECHANISM: ORDERING
VIA JAMMIMG

To understand the mechanism of the phase transition,
return to the particle configuration shown in Fig. 2. With
the high-density strip, as noted, particles are unable to mo
Comparison of configurations at different times shows t
while there are changes on the fringe, the interior of the s
is frozen on time scales of at least 104 steps.

For p51 and 0.75, the strip normally contains a cent
core of maximum density, while the surrounding particl
tend to fall along diagonal ‘‘branches’’ terminating on th
core, forming a herringbone pattern, or, as it were, an ar
pointing along the drive. This suggests that the core for
first, and that particles are subsequently trapped along
branches. The growth of the latter is limited by reduction
the density outside the strip. Forp50.6, diagonal branche
are again visible, but they are broader~5–10 lattice spac-
ings!.

While a detailed theory of the transition remains to
developed, it is possible to formulate a very simple theory

FIG. 7. Stationary order parameter versus density forp51
~squares!, p50.75 ~circles!, andp50.6 ~diamonds!. Open symbols
are for L5100; filled, L5150. Crosses represent the equilibriu
system (p51/2) with L5100.

FIG. 8. Stationary current densityj versusr for p50.6 in the
region of the transition;L5100.
4-4
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FIRST- AND SECOND-ORDER PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E64 016124
branch dynamics. Imagine the branch as a diagonal sequ
of particles terminating at the core, where no change is p
sible. The other ‘‘free’’ end is in contact with a region o
uniform densityr0. Using the two-site approximation to es
timate the rates of addition and loss of particles at the f
end ~see appendix!, one finds that the branch grows forr0
greater than 0.19, 0.26, and 0.29 in the neighborhood of
tip, for p51, 0.75, and 0.6, respectively.~For smaller den-
sities the tip shrinks.!

Figure 11 shows the density and order-parameter pro
perpendicular to the drive for the configuration of Fig. 2. T
marked variation in the density indicates that a second o
parameter~the difference between the maximium and min
mum densities,Dr5rmax2rmin), can be associated with th
phase transition. This density difference isthe order param-
eter in DDS with attractive NN interactions, but in that ca
the equilibrium system also shows phase separation, whe
the equilibrium NNE lattice gas does not have high- a
low-density phases. In the NNE system, a nonzeroDr is a
uniquely nonequilibrium effect.

For p51, ordered-state density profiles havermax.0.35,
essentially independent ofr, while rmin generally falls the
range 0.18–0.20, again without a systematicr dependence
For p.1/2, but less than unity, ordered configurations ag
show a high-density strip coexisting with a low-density r
gion having a nonzero current and no sublattice ordering.

FIG. 9. x[L2var(f) versus density forp50.6 andL5100
~open symbols! and 150~filled symbols!.

FIG. 10. Estimated phase boundary in ther2p plane. Points
represent simulation results; the lines are merely a guide to the
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p50.75, I findrmax.0.383, while forp50.6, rmax.0.40.
rmin also increases with decreasingp: rmin.0.19, 0.253, and
0.285 for p51, 0.75, and 0.6, respectively, in reasonab
agreement with the branch-growth model mentioned abo

Recall that for p51, jamming occurs readily forr
.0.34, that is, close to the densityrmax of the jammed strip
in the ordered state. Similarly, forp50.75, the density in the
strip is about 0.38, close to the global jamming density
0.37 or so@26#. The strip, then, represents an instability
local jamming in a system whose density lies below th
needed for global jamming. It is well known that driven pa
ticle systems such as the ASEP can exhibit ashock, i.e., a
discontinuous density profile, which back propagates~in the
direction opposite the drive! if the current in the high-density
region is smaller than in the low-density region@5#. It is
reasonable to suppose that such a shock forms in the pre
system due to a density fluctuation, and that its ‘‘tail’’ ma
then grow until it reaches the ‘‘head,’’ yielding a high
density ring that becomes the core of the jammed strip.

Once it has formed, additional particles cannot read
enter the jammed region, and sormax does not vary withr.
As the overall densityr increases,f grows~andj decreases!
as a result of the expansion of the jammed region, which
sufficiently high density can fill the entire system.

I turn now to some results on dynamics. The appar
waiting time t to the onset of the stationary state typica
falls in the range 104–105 for r,rc . At the transition, it
shows a sharp maximum, 1–3 orders of magnitude above
pretransition value, and then falls off gradually@t(rc)'2
3106 for p51 andL5150#. Definitive results on relaxation
times will require larger samples than were used in t
study.

Another interesting observation is the appearance,
some realizations atp51 andr>0.29, of slow relaxation;
examples are shown in Fig. 12. The order parameter gr
roughly linearly with lnt over a sizeable interval before sat
rating. As in models of granular compaction@27# and of
certain driven interfaces@28#, this can be understood in term
of an exponential growth in the mean time between sub
quent rearrangements, as the fully ordered state is
proached. A model with purely excluded-volume intera
tions, but with rather different boundary and drivine.

FIG. 11. Particle density~solid line! and order-parameter~bro-
ken line! profiles perpendicular to the field for the configuratio
shown in Fig. 2.
4-5
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RONALD DICKMAN PHYSICAL REVIEW E 64 016124
conditions, has in fact been found to reproduce slow~loga-
rithmic! granular compaction@29#. The present model ma
also be viewed as a ‘‘scalar’’ version of the situation en
sioned in Ref.@30#, in which application of a shear stres
provokes jamming~and thus rigidity! in a granular medium.

As shown in Fig. 13, the mean-timetJ to jamming exhib-
its an exponential dependence on the density. Studiesp
51 andL5150 givetJ.104 for r>0.34, while for smaller
densitiestJ grows exponentially with (0.342r), increasing
by more than two orders of magnitude betweenr50.34 and
0.32; tJ exceeds the simulation time forr,0.31.

V. DISCUSSION

Imposing a bias on the hopping dynamics of a lattice
with nearest-neighbor exclusion is found to favor antifer
magnetic ordering, in sharp contrast to what is observe
the case of finite repulsion, where the drive destroys or
The driven NNE lattice gas displays a surprisingly rich va
ety of behavior for its simplicity. The drive provokes sep
ration into high- and low-density regions, despite the f
that all iteractions are repulsive. The transition becomes
continuous for a sufficiently large bias.

A dynamic instability toward formation of a jammed, o
dered region underlies these phenomena. That is, the co
nation of bias and hard-core exclusion leads to a situatio
which the density in a region can increase until no furth
movement is possible. If such a region can grow to span
system~as evidently occurs at sufficiently high densitie!,
then antiferromagnetic order is imposed globally, preclud
the break-up into domains observed in the driven lattice
with finite NN repulsion@16,17#. Thus, as in the attractive
DDS, certain features of the ordered state can be unders
on the basis of dynamic stability, as opposed to interacti
or free-energy considerations. In the context of ASEP-l
models, the results show that a two-dimensional system
capable of exhibiting abulk phase transition, whereas th
corresponding one-dimensional system is expected to s

FIG. 12. Long-time evolution of the order parameter in two ru
with p51 andL5150. Upper curve,r50.30; lower,r50.29.
01612
-

s
-
in
r.

-
-
t
s-

bi-
in
r
e

g
s

od
s

e
is

w

only boundary-inducedtransitions.
Jamming, i.e., the formation of locally or globally immo

bile configurations, is of great interest in the context of mo
eling colloidal dynamics@31,32#, traffic @4#, and granular
media@6,7#. While the present model is too simple to repr
sent such systems, it may yield insights into general asp
of jamming, for example, the dependence of the jamm
probability or mean time to jamming on density and drive

Many aspects of the system remain to be investiga
Related to the first-order phase transition is the question
hysteresis, and of the nucleation, growth, and decay o
jammed strip. The dynamics of the interface between hi
and low-density regions should be of particular relevence
these issues. The nonequilibrium critical behavior obser
for a smaller drive~e.g.,p50.6) is an important subject fo
a detailed study, since the nature of scaling in DDS rema
controversial@9,10#. Further issues to be explored in futu
work are tricritical behavior; the effects of different initia
configurations, of the aspect ratio~in rectangular systems!, of
boundary conditions~open along the drive, and/or reflectin
perpendicular to it!; temporal and spatial correlations, an
finite-size effects. Finally, it would be very useful to develo
continuum theoretical descriptions of this system, be th
stochastic ~Langevin-like, starting from a suitable time
dependent Landau-Ginzburg formulation!, or deterministic
~hydrodynamic, starting perhaps from a kinetic theory of t
lattice model!.
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APPENDIX: CLUSTER APPROXIMATIONS

In this appendix I derive two- and four-site cluster a
proximations for the NNE lattice gas.~For background on

FIG. 13. Mean time to jamming versus density forp51 and
L5150.
FIG. 14. Labeling scheme in
the pair approximation.
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FIRST- AND SECOND-ORDER PHASE TRANSITIONS IN . . . PHYSICAL REVIEW E64 016124
cluster approximations for nonequilibrium lattice models, s
Refs.@10# and @33#.! In the two-site approximation we mus
consider the NN pairs shown in Fig. 14. The variableswA ,
wB andv represent the fraction of all NN pairs of the spe
fied type, with the labels ‘A’ and ‘B’ denoting the sublattic
In a driven system we would, in general, have to distingu
between pairs oriented parallel and perpendicular to
drive. Here, however, the prohibition against NN occup
pairs implies thatwi5r i independent of orientation, wher
r i ( i 5A or B) is the fraction of occupied sites in sublattic
i. ~The overall particle density isr5(rA1rB)/2, while v
512rB2rB .) Note as well that the placement of the su
lattices is arbitrary: we could reverse the positions of A a
B relative to the drive without altering the result.

In the two-site approximation we construct a closed se
equations for the pair probabilities by considering transitio
among the NN states depicted in Fig. 14. Consider, for
ample, the transition shown in Fig. 15, where we assume
drive acts toward the right. The particle may exit horizo
tally ~against the drive! or vertically; in either case the targe
site and its three neighbors not in the central pair must
vacant. In the two-site approximation we take the probabi
of such a configuration of six sites as (wA

2/rA)@v/(1
2rB)#3. Here one factor ofwA represents the probability o
the central pair,wA /rA is the probability of an occupied
vacant NN pair, given that the site in sublatticeA is occu-
pied, and the factorsv/(12rB) represent conditional prob
abilities for the neighbors of the target site to be vaca
given that the target site itself~which lies in the
B-sublattice!, is vacant.~Note that the NNE condition im-
plies wA5rA , i.e., a site neighboring an occupied onemust
be vacant.! Including the intrinsic hopping rates, we find th
the overall rate for transitions of this kind is

W~wA→v !5rAS 12
p

2D S v
12rB

D 3

. ~A1!

Evaluating the remaining transition rates in the same m
ner, one readily obtains

FIG. 15. An event contributing to the transitionwA→v as ana-
lyzed in the pair approximation.
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drA

dt
5v3F rB

~12rA!3
2

rA

~12rB!3G , ~A2!

and a similar equation forrB ~with subscriptsA andB inter-
changed!. Notice thatp does not appear in these equation
the two-site approximation is insensitive to the drive.
study the possibility of ordering we consider solutions of t
form rA5r1u, rB5r2u. A simple calculation shows tha
u50 is the only solution forr,1/4, while for r.1/4 we
have in addition the ordered states

u56~12r!S 4r21

324r D 1/2

. ~A3!

Thus the pair approximation yeilds the usual kind of mea
field critical point, with the order-parameter exponentb
51/2.

In the pair approximation the stationary current density

j 5
v3

2 F prA

~12rB!3
2

~12p!rB

~12rA!3 G . ~A4!

For r,1/4 this yields

j 5rS p2
1

2D S 122r

12r D 3

~A5!

while in the ordered state one finds

j 5S p2
1

2D 324r

8~12r!3
@126r112r228r3#. ~A6!

The current is continuous at the transition, and exhibit
maximum in the disordered state, forr.0.1771.

The cluster types considered in thefour-site approxima-
tion are shown in Fig. 16. Once again, the positions of
sublattices relative to the drive are arbitrary and do not aff
the final result. Symmetry forces equality between cert
cluster densities: note for example that the density on sub
tice A is given by

rA5q11q55q31q5 ~A7!

implying thatq35q1; similarly, q25q4.
Configuration probabilities are again approximated us

conditional probabilities, given the presence of the cen
four-site cluster. The following examples illustrate the pr
cedure. First consider a transition of a 4-site cluster fr
state 0 to state 1. The particle may enter the central clu
from the right or from below. The configuration required
the former case is shown in Fig. 17~a!; we approximate its
probability asq0q2 /(12rA), that is, the probability of the
central cluster times the conditional probability of a clus
FIG. 16. Labeling scheme in
the four-site approximation.
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in state 2, given that one site~in sublatticeA) is vacant. The
rate of this process isp/211/4 times the preceding expre
sion.

Now consider the reverse transition; the particle may e
to the left or below. The configuration required in the form
case is given in Fig. 17b; its probability is approximated

q1
2

rA

q01q2

12rB
,

where one factor ofq1 is due to the central cluster, a facto
q1 /rA represents the conditional probability of state 1, giv
one edge with itsA-sublattice site uccupied~and, by neces-
sity, the adjacentB-sublattice site vacant!. The final factor,
(q01q2)/(12rB), is the conditional probability of a cluste
in state 0or 2, given one site~in the B-sublattice! vacant.

Enumerating the remaining transitions into and out
state 0 one obtains

dq0

dt
52q0S q2

vB
1

q1

vA
D1

q1
2

rA
s21

q2
2

rB
s1 , ~A8!

where v i512r i ( i 5A or B), s15(q01q1)/vA , and s2
5(q01q2)/vB . A similar analysis yields

dq1

dt
5

1

2 S q2s12q1s21
q2

vA
@q02q1#1

q1s2

rA
@q52q1# D .

~A9!

The equation forq2 is obtained by exchanging labels 1 an
2, 5 and 6, andA andB in the above. Finally, for state 5 on
finds

dq5

dt
5q1S q2

vA
2

q5s2

rA
D , ~A10!

with the corresponding equation forq6 given by interchang-
ing labels as before. Notice thatp appears in none of thes
equations, i.e., the 4-site approximation is also insensitiv
the nonequilibrium drive.

FIG. 17. ~a! Configuration required for the transitionq0→q1.
~b! Configuration required for the reverse transition.
. A
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Eqs. ~A8!–~A10! are integrated numerically, using
fourth-order Runge-Kutta scheme@34#. The transition, which
is again continuous, occurs atrc50.2696, closer to the
~equilibrium! critical density of 0.37 than in the 2-site ap
proximation @25#. The current in the 4-site approximation
given by

j 5
2p21

4
~q1s21q2s1!, ~A11!

is plotted in Fig. 1. While this prediction is in good agre
ment with simulations at low densities, the analysis must
extended to larger clusters to take the drive into account@25#.

Finally, we apply the pair approximation to the grow
and evaporation dynamics of a diagonal branch. Figure
depicts the situation around the free tip, in whose vicinity
assume a uniform densityr0, sufficiently low that there is no
sublattice ordering. The other end of the branch is assum
to terminate at the core of the high-density strip; the bran
can grow or shrink only at its free end. The addition eve
shown in Fig. 18a has, in the pair approximation, the r
(p/2)r0v/(12r0) while for the corresponding event wit
motion perpendicular to the drive, the rate is (1/4)r0v/(1
2r0). ~Note that we regard the presence of the branch tip
given; thus its probability does not appear in these exp
sions.! The loss event shown in Fig. 18~b! has the rate@(1
2p)/2#@v/(12r0)#3; the rate for the event in which the pa
ticle moves perpendicular to the drive is (1/4)@v/(12r0)#3.
If we let n represent the mean number of particles in t
branch, then combining the gain and loss terms we find

dn

dt
5

1

4

122r0

12r0
F ~2p11!r02~322p!S 122r0

12r0
D 2G .

~A12!

The densityr0 for which dn/dt50 is interpreted as the sta
tionary density near the branch tip.

FIG. 18. ~a! An event contributing to the growth of a branch
dots indicate the continuation of the branch, which terminates at
core.~b! An event contributing to the shrinkage of a branch.
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