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First- and second-order phase transitions in a driven lattice gas with nearest-neighbor exclusion
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A lattice gas with infinite repulsion between particles separated bylattice spacing, and nearest-neighbor
hopping dynamics, is subject to a drive favoring movement along one axis of the square lattice. The equilib-
rium (zero drive transition to a phase with sublattice ordering, known to be continuous, shifts to lower density,
and becomes discontinuous for large bias. In the ordered nonequilibrium steady state, both the particle and
order-parameter densities are nonuniform, with a large fraction of the particles occupying a jammed strip
oriented along the drive. The drive thus induces separation into high- and low-density regions in a system with
purely repulsive interactions. Increasing the drive can provoke a transition to the ordered phase, and thereby,
a sharpreductionin current.
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[. INTRODUCTION lute phases. This spontaneous spatial ordering is somewhat
similar to “lane-formation” or “flocking” phenomena ob-

The study of simple nonequilibrium lattice hopping mod- served in systems of self-propelled agdi3, 19, but here is
els, such as the asymmetric exclusion proddsSEP), has intimitely connected with the existence of jammed states.
blossomed over the past decade, motivated by studies of trafacreasing the drive can provoke jamming, and thereby, a
fic and of granular mattdl—7]. In parallel, there is continu- sharp reduction in the current, quite contrary to the usual
ing interest indriven diffusive system@®DS): lattice gases relation between bias and currerithe system, in other
with biased hopping8—11], originally proposed as models words, exhibits negative differential resistance in some re-
of fast ionic conductor$FIC) [12]. These systems exhibit a gions of parameter spagéihe order of the phase transition,
variety of far-from-equilibrium collective phenomena, such moreover, changes as the drive is increased. Thus, one finds
as synchronization, jamming, and anisotropic phase separé-variety of surprising collective phenomena in a simple sys-
tion. tem.

In the widely studied case of DDS with attractive nearest- The remainder of this paper is organized as follows. In the
neighbor(NN) interactions, application of a driving field ~ next section, | define the model and review its equilibrium
(favoring hopping along one of the principal lattice direc- properties. Section Ill presents simulation results pertinent to
tions) causes the interface between phases to orient along ttiee phase diagram, while in Sec. IV, the mechanism of the
field. Since the critical temperature increases wihthe phase transition is examined, and some results on dynamics
drive favors ordering. In DDS withrepulsive NN interac- ~ are reported. Section V contains a summary and discussion.
tions, which is more pertinent to ionic conductipt3], or-  Several cluster-approximation results cited in the text are de-
dering is generally associated with unequal sublattice occuived in the appendix.
pation (as in antiferromagnetic spin systemsand one
expects the drive to suppress order. Indeed, the original field Il. MODEL
theoretic, simulation, and mean-field analysgs4,15, ] . .
showed that antiferromagnetic order is destroyed generically | Study a lattice gas with occupancy of nearest-neighbor
for a drive E>2J, J being the magnitude of the nearest- gltes excludedNNE):-the dlstgnce between any palrlof par-
neighbor interaction. More recent simulatidii$,17], using t!cles must be>_1 lattice spacing; thgre are no.other interac-
larger lattices, strongly suggest that global antiferromagnetions. If we define an energy function on lattice configura-
order is destroyed bgny drive, however small. The obser- tlOns so:
vation that FIC materials exhibit phase transitions, even in
Fhe presence of repulswg short_—range mterac’uong, anc_i grow- E({o})=JE o}, (1)
ing interest in transport in particle systems, motivate inves- NN
tigation of a driven system withard-corerepulsion.

It will be shown that ordering in the case of infinite re- where the sum is over nearest-neighbor paits; 0 (1) in
pulsion is much more robust than for the finite-repulsioncase sité is vacant(occupied, and{c} denotes the particle
DDS studied previously. While this accords with intuition, it configuration, then the NNE model represents the
is by no means obviousone can still envision the finite- limit.
domain scenario, as found for finith. Not only does the Equilibrium properties of this lattice analog of the hard-
ordered state persist under driving, but it exhibits, in additionsphere fluid were studied via series expansion in the 1960's,
to sublattice ordering, a global separation into dense and dieading to the conclusion th&bn bipartite latticesthe sys-

tem undergoes a continuous phase transition at a critical den-
sity p., to a state with preferential occupancy of one sublat-
*Electronic address: dickman@fisica.ufmg.br tice; p.=0.37 on the square lattid0—22. (The chemical
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potential is the temperaturelike parameter for this entropy- 006 — T T T T T
driven phase transition, which falls in the Ising universality
class[21].) 0.04 L ]
The driven system follows a nearest-neighbor hopping Lty .
dynamics. Each particle has an intrinsic rate of 1/4 for hop- . ]
ping in the *y directions, and op/2 and (1-p)/2 in the 0.03 - ]
+x and —x directions, respectively. Denoting the intrinsic j .
hopping rate byP, we have 0.02 | i
o 1
P(I:J‘”Jil):Zu (2) 0.01 | i
P(| —>|+1):7+E _} (3) ooo 1 | 1 1 1 1
A== =7=5P~ 35/ 0.00 0.05 010 0.15 020 025 0.30 0.35
. I . P

Thus,p—1/2 represents the deviation from equilibrium, with
p=1 corresponding t&&—c in standard DDS(Note, how- FIG. 1. Stationary current density versus particle densitypfor
ever, that in the present case, hard-core repulsion alwaysl andL=50(+), L=100 (O), andL =150 (diamonds. Vertical
takes precedence over the drive. lines indicate the transition &t=100 (dotted and L = 150 (solid).

| study the driven NNE lattice gas on a square lattice ofSolid curve: four-site MFT.
L? sites, using periodic boundary conditions in both direc- , i
tions. Initially, N particles are thrown at random onto the SPectively, the current suddenly jumps to a lower value, and
lattice, respecting the NNE condition; this yields a homoge-the” contmu_es to _decrease smoothly -V\_Ilth density. Thgse data
neous, disordered initial configuratidithe random sequen- Suggest a discontinuous phase transitiarthe L —c limit)
tial adsorptionRSA) or “parking” process used to generate &t @ densityp.=0.263, far below that of the equilibrium
the initial state eventually jams, at a mean density of 0.364£ritical point. Before analyzing the numerical evidence in
[23]. In practice, one can reach densities up to about 0.38 fogreater detail, some observations are in order. _
L=100] In the dynamics, a randomly selected particle is Fl_rst, it is useful tp examine a typical pa.rtlcle configura-
assigned a hopping direction according to the rates giveHO” in the high-density, low-current state; Fig. 2 sho_ws such
above, and the new position is accepted, subject to the NN Snapshot, fop=1, p=0.267, andL =200, revealing a
condition.N such attempted moves define one time unit. Af-Strongly nonuniform distribution: a high-density strip has
ter a transient, whose duration depends upph, and the formed parallel to the drive. Within the strip, all particles

densityp=N/L2, the system reaches a steady state in whiclPCCUPY @ single sublattice, _and their movement is block_ed.
the current density (the net flux of particles along the x The low-density region outside the strip shows no sublattice

direction per site and unit timgand other macroscopic prop- s as0
7€
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erties fluctuate about stationary values. | report results of%g%?}% .«’fﬁéﬁ%ﬁé oo 3
extensive simulations qt=1, 0.75, and 0.6; some studies at #¥# §¢%, Jaii s g‘ : " 52 .5/’%;
p=1/2 were also performed to facilitate comparison with -£5g¥55, %§,ng§{~ AT SN s RS
equilibrium. The simulations extend to a maximum time of %% {:’%’%@O ) “!"3??}3. %f’i*§§$§§%°°
from ~3%x10° to ~6x 10" steps, depending on the time #g2*hs kX R i M?fo§§:jgi%~oo.:o'gj§‘i‘g égli:igﬁif
required to reach the stationary state. 2B RO et : o zg%:g&g-w
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To begin the analysis of the driven NNE system, | exam- i.-3%5%
ine the stationary current densityln a lattice gas with only
onsite exclusionJ=0), je(2p—1)p(1—p). In the present
case, we should again expgdb grow with p at low densi-
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ties (increasing number of carrigrand to decrease at high 3353

density (increasing likelihood of blocking by occupied f{*’%%%

neighbors, but the maximum will move tp<1/2, since in ,‘“«2;25 i

the NNE system, each particle excludes five sites. These ob%&‘:f g 2

servations are verified in Fig. 1, which shoy(g) for maxi- 3‘;"’: S &g"g % j}‘%
mum drive,p=1. For p=<0.25 there is little dependence on %é;“’ zg&f&g%iﬂy.&,ﬁ%%%

system size; for the lower range of densitigs<(0.1) the
simulation data are in good agreement with a four-site cluster FIG. 2. Snapshot of particle configuration in stationary state,
mean-field calculatiosee appendjx But at higher densities =1, p=0.267,L=200. Filled and open symbols represent particles
(p=0.272, 0.265, and 0.264 fdr=100, 150, and 200, re- on different sublattices. Drive toward the right.
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FIG. 3. Example of a low-density jammed configuration on a

lattice with periodic boundaries. Such configurations are not en-

countered in simulations fdr=50.

0.34,L
4

0.37, the fact

1,p

purely fortuitous. Larger clus-
150)

ters, or a spatially extended MFT will be needed to study the

driven NNE lattice ga$25].

|PA_PB|a

¢
1 andL

B. Order parameter

N;/L?, with N; the number of particles in sublat-

0.2696. But since in equilibriump,

1/4, while the four-site approximation shown in Fig. 1

Data for the stationary current and order parameter are
obtained from histograms for the corresponding quantities, in
the final (stationary stage. Near the transition, pt=1 and

Finally, one should note that the two- and four-site cluster
0.75, the histograms are bimodake Fig. 5.

.mean-field theorie$MFT), derived in the appendix, are so

configurations exist even at very low densities: an example i
shown in Fig. 3. In practice, however, jammed states are n

encountered in simulations for densities less than about 0

for L=150 andp

Figure 6 shows the evolution ¢ft) and ¢(t) in a single

FIG. 4. Example of a jammed configuratigo
opposite directiongand site exclusion the only interactjon trial nearp. : the order parameter increases suddenly, after a

150. Drive toward the right.

icts a continuous transition to a sublattice-ordered state at

robabilities arendependentf the drivep. Pair MFT pre-

o

phase transition between tvaativestates, i.e., having a non-
zero current. Jamming is nonetheless relevant to the nature
of this transition, as discussed below.
Righly constrained by the NNE condition that the cluster
that the kink in the MFT curve falls near the discontinuous
values. The current mirrors the changes in the order param-
eter, since the high value of the latter implies the presence of
discontinuousphase transition. Whether jamming representsa strip of immobile particles(The time to the onset of or-

3
Pe
givesp.
while
particles
ticei.
016124-3

all particles

0.75 andL =100,

but the particle density is essen- The phase transition in the NNE lattice gas is signaled by

tially uniform, except for empty regions downstream from @ nonzero order parameter

the point where a pair of diagonal rows of particles meet at a

right angle. The system can jam fg<<1 as well:

and are associated witljgnssibly

1. In particular, jamming is never ob-

In jammed configurations

)

=50
In that case, jammed states form rather more readiljong waiting time, and then jumps between high and low

1, jamming occurs readily = 0.34; in other words,
the drive induces jamming at densities well below the RSA4nsition should be seen as

limit. A jammed configuration typical of the sort encountered
in simulations is shown in Fig. 4Jammed states of the kind

A second, related point is that the system exhijsitemed

states: absorbing configurations in which each particle is
Jammed configurations are familiar from ttveo species

driven lattice gas, with the two kinds of particle driven in
a well-defined phase transition in the driven NNE systemdering varies from trial to trial, within the range %03

will be addressed in future work. Here, | concentrate on thex 10°, nearp,, for p

strips, were never observed in the simulations reported here,
queue up to form dense configurations whose lifetime growsvherep;

function of system size will be required to determine inter-
for which L

face scaling properties.
served in the vicinity of the transition to the ordered phase
shown in Fig. 3, consisting of a small number of diagonal

hopping dynamics employed here is reversiblederl/2, so

appears to be rough, but systematic studies of its width as a
blocked from moving by its neighborghus, j=0). Such
that the jammed configurations are then inaccessible.

ordering, and harbors all the mobile particlggt first
glance, the boundary between high- and low-density regions.
motion against the drive is possible in this case
exponentially with system size. Fqr

jamming occurs at densities above about O(8late that the

occupy the same sublattice
quired density is~0.25)

[24,9].
than in the NNE lattice gaéfor large driving fields the re-

Forp
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FIG. 5. Stationary order-parameter histogramp=1, p 0.25 0.30 0.35 0.40
=0.2715,L=100. p

| report in Fig. 7 the stationary order parameter as a func- F!G- 7. Stationary order parameter versus density ferl
tion of density for several values of the dripe The phase (Sduares p=0.75(circles, andp=0.6 (diamonds. Open symbols
transition is clearly discontinuous f@r=0.75, and continu- are for L=100; flll_ed, L=150. Crosses represent the equilibrium
N ' system p=1/2) with L=100.
ous forp=0.6 and 0.5equilibrium). For p=0.6 the current
is continuous in the vicinity of the transitigifrig. 8), and the
system exhibits the hallmarks of a critical point: the variation
of the order parameter with becomes sharper with increas-
ing system size; the histograms are unimodal, becoming very To understand the mechanism of the phase transition, we
broad near the transition, so that the variance of the ordeteturn to the particle configuration shown in Fig. 2. Within
parameter shows a sharp pedkg. 9), suggesting thayy  the high-density strip, as noted, particles are unable to move.
=L%var(¢) (which represents the staggered susceptibility inComparison of configurations at different times shows that
equilibrium), will diverge asL—o. Locating thetricritical while there are changes on the fringe, the interior of the strip
point, at which the order of the transition changes, will re-is frozen on time scales of at least*1steps.
quire more extensive studies; the present results allow one to For p=1 and 0.75, the strip normally contains a central
conclude that the tricritcal drivp, lies between 0.6 and 0.75. core of maximum density, while the surrounding particles
The transition from the disordered, high-conductivity t€nd to fall along diagonal “branches” terminating on the
state to the ordered, low-conductivity state occurs at loweFOr€; forming a herringbone pattern, or, as it were, an arrow

density, the larger ig. Thus, we may cross the phase bound_pointing along the.drive. This suggests that the core forms
ary at fixed density by augmenting(Fig. 10: at this point first, and that particles are subsequently trapped along the

: ; ranches. The growth of the latter is limited by reduction of
itscerec;sr;%n(tj,riszradoxmalIy, falls sharply in response to a he density outside the strip. Fpr=0.6, diagonal branches

are again visible, but they are broad&-10 lattice spac-
ings).

IV. TRANSITION MECHANISM: ORDERING
VIA JAMMIMG

0.030 While a detailed theory of the transition remains to be
developed, it is possible to formulate a very simple theory of
0.025 [
~ 0.003 ‘ .
0.020 |
N
0.015
22T T T ..
a
"~ 0.002 "a .
[ ]
[ ]
© 01 ]
n
| |
[ ]
[ ]
[ ]
0.0 . . . )
0 4 8 12 16 0.001 '
0.32 0.34 0.36

Int

pP
FIG. 6. Evolution of the order parametgower panel and cur-

rent density(uppey in a single trial for the same conditions as in FIG. 8. Stationary current densifyversusp for p=0.6 in the

Fig. 5. region of the transitiont. = 100.
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P FIG. 11. Particle densitysolid line) and order-parametébro-

ken line profiles perpendicular to the field for the configuration
FIG. 9. y=L%var(¢) versus density fop=0.6 andL=100 shown in Fig. 2.

(open symbolsand 150(filled symbols.

p=0.75, | find p;,ax=0.383, while forp=0.6, pa,=0.40.
branch dynamics. Imagine the branch as a diagonal sequenein &S0 increases with decreasipgo,,=0.19, 0.253, and
of particles terminating at the core, where no change is po-285 forp=1, 0.75, and 0.6, respectively, in reasonable
sible. The other “free” end is in contact with a region of 2dreement with the branch-growth model mentioned above.
uniform densityp,. Using the two-site approximation to es- ~ Recall that forp=1, jamming occurs readily forp
timate the rates of addition and loss of particles at the freg=0-34, thatis, close to the densipy, ., of the jammed strip
end (see appendix one finds that the branch grows fpg in t_he_ ordered state. Similarly, far=0.75, _the dgnsny in t_he
greater than 0.19, 0.26, and 0.29 in the neighborhood of thglliP is about 0.38, close to the global jamming density of

tip, for p=1, 0.75, and 0.6, respectivelgFor smaller den- 0.37 or so[26]. The strip, then, represents an instability to
sities the tip shrinks. local jamming in a system whose density lies below that

Figure 11 shows the density and order-parameter profileg¢€ded for global jamming. It is well known that driven par-
perpendicular to the drive for the configuration of Fig. 2. TheliCle Systems such as the ASEP can exhibdhack i.e., a
marked variation in the density indicates that a second ordefiScontinuous density profile, which back propagateshe
parameteithe difference between the maximium and mini- direction opposite the driyef the current in the high-density

mum densitiesA p= p,a— pmin), can be associated with the region is smaller than in the low-density regi@ﬁ]. It is
phase transition. This density differencethie order param- '€asonable to suppose that such a shock forms in the present
eter in DDS with attractive NN interactions, but in that case SyStem due to a density fluctuation, and that its “tail” may
the equilibrium system also shows phase separation, wheref#€n grow until it reaches the “"head,” yielding a high-

the equilibrium NNE lattice gas does not have high- andd€nsity ring that becomes the core of the jammed strip.
low-density phases. In the NNE system, a nonz&yois a Once it has formed, additional particles cannot readily

uniquely nonequilibrium effect. enter the jammed rggipn, and pg s, does not vary withp.

For p=1, ordered-state density profiles haug,=0.35, As the overall density |nqreases¢ g_rows(andj dgcreas_e)s
essentially independent @f, while p,;, generally falls the S @ result of the expansion of the jammed region, which for
range 0.18-0.20, again without a systematidependence. Sufficiently high density can fill the entire system.

For p>1/2, but less than unity, ordered configurations again I _turn_now to some results on dynam|cs. The apPare”t
show a high-density strip coexisting with a low-density re-Waiting time 7 to the onset of the stationary state typically

gion having a nonzero current and no sublattice ordering. Foi@!lS in the range 15-10° for p<p.. At the transition, it
shows a sharp maximum, 1-3 orders of magnitude above the

pretransition value, and then falls off gradually(p.)~2

T T T ] X 10° for p=1 andL = 150]. Definitive results on relaxation
09 . times will require larger samples than were used in this
s b N\ ] study.
Q| w ] Another interesting observation is the appearance, in
07 - . some realizations go=1 andp=0.29, of slow relaxation;
i 1 examples are shown in Fig. 12. The order parameter grows
06 I '\\ ] roughly linearly with Int over a sizeable interval before satu-
05 Y E M ¥ rating. As in models of granular compacti¢@7] and of
0.25 0.30 0.35 040 certain driven interfacd8], this can be understood in terms
p of an exponential growth in the mean time between subse-

quent rearrangements, as the fully ordered state is ap-
FIG. 10. Estimated phase boundary in the p plane. Points proached. A model with purely excluded-volume interac-
represent simulation results; the lines are merely a guide to the ey&ions, but with rather different boundary and driving
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FIG. 12. Long-time evolution of the order parameter in two runs

with p=1 andL =150. Upper curvep=0.30; lower,p=0.29. FIG. 13. Mean time to jamming versus density for1 and

L=150.

conditions, has in fact been found to reproduce s{ga-  only boundary-inducedransitions.
rithmic) granular compactiofi29]. The present model may Jamming, i.e., the formation of locally or globally immo-
also be viewed as a “scalar” version of the situation envi-bile configurations, is of great interest in the context of mod-
sioned in Ref[30], in which application of a shear stress eling colloidal dynamicsg31,32, traffic [4], and granular
provokes jammindand thus rigidity in a granular medium. media[6,7]. While the present model is too simple to repre-
As shown in Fig. 13, the mean-timg to jamming exhib-  sent such systems, it may yield insights into general aspects
its an exponential dependence on the density. Studigs at of jamming, for example, the dependence of the jamming
=1 andL =150 giver;=10" for p=0.34, while for smaller probability or mean time to jamming on density and drive.
densitiesr; grows exponentially with (0.34p), increasing Many aspects of the system remain to be investigated.
by more than two orders of magnitude betwgen0.34 and Related to the first-order phase transition is the question of
0.32; 7; exceeds the simulation time fpr<0.31. hysteresis, and of the nucleation, growth, and decay of a
jammed strip. The dynamics of the interface between high-
and low-density regions should be of particular relevence to
these issues. The nonequilibrium critical behavior observed
Imposing a bias on the hopping dynamics of a lattice gasor a smaller drive(e.g.,p=0.6) is an important subject for
with nearest-neighbor exclusion is found to favor antiferro-a detailed study, since the nature of scaling in DDS remains
magnetic ordering, in sharp contrast to what is observed imontroversial9,10]. Further issues to be explored in future
the case of finite repulsion, where the drive destroys orderwork are tricritical behavior; the effects of different initial
The driven NNE lattice gas displays a surprisingly rich vari- configurations, of the aspect rafio rectangular systemsof
ety of behavior for its simplicity. The drive provokes sepa-boundary conditiongopen along the drive, and/or reflecting
ration into high- and low-density regions, despite the factperpendicular to jt temporal and spatial correlations, and
that all iteractions are repulsive. The transition becomes disfinite-size effects. Finally, it would be very useful to develop
continuous for a sufficiently large bias. continuum theoretical descriptions of this system, be they
A dynamic instability toward formation of a jammed, or- stochastic (Langevin-like, starting from a suitable time-
dered region underlies these phenomena. That is, the comldependent Landau-Ginzburg formulatipror deterministic
nation of bias and hard-core exclusion leads to a situation ighydrodynamic, starting perhaps from a kinetic theory of the
which the density in a region can increase until no furtherattice model.
movement is possible. If such a region can grow to span the
system(as evidently occurs at sufficiently high densities
then antiferromagnetic order is imposed globally, precluding
the break-up into domains observed in the driven lattice gaitt
with finite NN repulsion[16,17. Thus, as in the attractive
DDS, certain features of the ordered state can be understo
on the basis of dynamic stability, as opposed to interacti0n§md CAPES.
or free-energy considerations. In the context of ASEP-like APPENDIX: CLUSTER APPROXIMATIONS
models, the results show that a two-dimensional system is '
capable of exhibiting @ulk phase transition, whereas the In this appendix | derive two- and four-site cluster ap-
corresponding one-dimensional system is expected to shoproximations for the NNE lattice gagFor background on

V. DISCUSSION
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dpa_ of _PB__ Pa
dt (1-pa)® (1-pp)°

, (A2)

and a similar equation fgsg (with subscriptsA andB inter-
changegl Notice thatp does not appear in these equations;
the two-site approximation is insensitive to the drive. To
A study the possibility of ordering we consider solutions of the

form pp=p+u, pg=p—u. A simple calculation shows that
0 u=0 is the only solution forp<1/4, while for p>1/4 we
have in addition the ordered states

4p_1 1/2
u==(1l-p) 3-4,

FIG. 15. An event contributing to the transitiov,—v as ana-
lyzed in the pair approximation.

(A3)
cluster approximations for nonequilibrium lattice models, see
Refs.[10] and[33].) In the two-site approximation we must s the pair approximation yeilds the usual kind of mean-
consider the NN pairs shown in Fig. 14. The variables,  field critical point, with the order-parameter exponegit
wg andv represent the fraction of all NN pairs of the speci- _ o
fied type, with the labels ‘A’ and ‘B’ denoting the sublattice. |y the pair approximation the stationary current density is
In a driven system we would, in general, have to distinguish
between pairs oriented parallel and perpendicular to the 03
drive. Here, however, the prohibition against NN occupied j= >
pairs implies thatv; = p; independent of orientation, where
p; (i=A or B) is the fraction of occupied sites in sublattice
i. (The overall particle density ip=(pa+ pg)/2, While v
=1-pg—pg.) Note as well that the placement of the sub- ( 1) ( 1_2p>3
1=p

Poa (1-p)ps
(1-pp)®  (1-pa)®

For p<1/4 this yields

. (A4)

lattices is arbitrary: we could reverse the positions of A and P—3 (A5)
B relative to the drive without altering the result.
In the two-site approximation we construct a closed set ofypile in the ordered state one finds
equations for the pair probabilities by considering transitions
among the NN states depicted in Fig. 14. Consider, for ex-
ample, the transition shown in Fig. 15, where we assume the i=
drive acts toward the right. The particle may exit horizon-
tally (against the driveor vertically; in either case the target
site and its three neighbors not in the central pair must b
vacant. In the two-site approximation we take the probabilit);n
of such a configuration of six sites aswvi/pa)[v/(1
—pg) 3. Here one factor ofv, represents the probability of
the central pairw,/pa is the probability of an occupied-

1-p

—3>ﬂ[1—6 11202 8p%].  (A6)
2/g1-p2 o

é’he current is continuous at the transition, and exhibits a
aximum in the disordered state, fpr=0.1771.

The cluster types considered in tfaur-site approxima-
tion are shown in Fig. 16. Once again, the positions of the
sublattices relative to the drive are arbitrary and do not affect
the final result. Symmetry forces equality between certain

vgcant NN pair, given that the site in sublatt@es OCCU- o1 ster densities: note for example that the density on sublat-
pied, and the factors/(1—pg) represent conditional prob- tice A is given by

abilities for the neighbors of the target site to be vacant,
given that the target site itselfwhich lies in the =0+ o= 0.+ (A7)
B-sublattice, is vacant.(Note that the NNE condition im- A= 01T 8s=0s ™5

plieswa=p,, i.€., a site neighboring an occupied ameist  implying thatgs=qy; similarly, g,=qs.

be vacani.Including the intrinsic hopping rates, we find that ~ Configuration probabilities are again approximated using

the overall rate for transitions of this kind is conditional probabilities, given the presence of the central
four-site cluster. The following examples illustrate the pro-

p v \3 cedure. First consider a transition of a 4-site cluster from
W(WA—>U)=pA( 1- 5) ( l—pg) (Al) state O to state 1. The particle may enter the central cluster

from the right or from below. The configuration required in

the former case is shown in Fig. (8], we approximate its
Evaluating the remaining transition rates in the same manprobability asqyq,/(1—p,), that is, the probability of the

ner, one readily obtains central cluster times the conditional probability of a cluster

A I:i I:I I:l I:I I:I I:I FIG. 16. Labeling scheme in

the four-site approximation.
Qo q gz ga Qs gs Gs
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FIG. 17. (a) Configuration required for the transiticpy—q;. @ ®)

(b) Configuration required for the reverse transition. FIG. 18. (a) An event contributing to the growth of a branch;

dots indicate the continuation of the branch, which terminates at the

in state 2, given that one sit@ sublatticeA) is vacant. The core.(b) An event contributing to the shrinkage of a branch.

rate of this process igp/2+1/4 times the preceding expres-

sion. Egs. (A8)—(A10) are integrated numerically, using a

Now consider the reverse transition; the particle may exitq th_order Runge-Kutta scherfi@4]. The transition, which
to the left or below. The configuration required in the formeriS again continuous, occurs ai,=0.2696, closer to the

case is given in Fig. 17b; its probability is approximated 8S (equilibrium) critical density of 0.37 than in the 2-site ap-

2 proximation[25]. The current in the 4-site approximation,
d1 dot 02 :
- , given by
pa 1—ps
. . 2p—1
where one factor ofj; is due to the central cluster, a factor i= T(Q132+ 0,51), (Al

d,/pa represents the conditional probability of state 1, given
one edge with itsA-sublattice site uccupietand, by neces-
sity, the adjacenB-sublattice site vacaptThe final factor,
(dot02)/(1—pg), is the conditional probability of a cluster
in state Oor 2, given one sitdin the B-sublatticg vacant.

Enumerating the remaining transitions into and out of
state 0 one obtains

is plotted in Fig. 1. While this prediction is in good agree-
ment with simulations at low densities, the analysis must be
extended to larger clusters to take the drive into accit
Finally, we apply the pair approximation to the growth
and evaporation dynamics of a diagonal branch. Figure 18
depicts the situation around the free tip, in whose vicinity we

dq 9% q q? o2 assume a uniform densipy, sufficiently low that there is no
o O(_Z 2+ Es,+ 25, (A8)  sublattice ordering. The other end of the branch is assumed
dt Us Ua/ Pa PB to terminate at the core of the high-density strip; the branch

can grow or shrink only at its free end. The addition event
shown in Fig. 18a has, in the pair approximation, the rate
(p/2)pov/(1—pg) while for the corresponding event with
dg, 1 a» a1S; motion perpendicular to the drive, the rate is (plig)/(1
o 5(Q231—Q152+ J[QO_Ql]_F K[Qs‘%])- —po)- (Note that we regard the presence of the branch tip as
(A9) given; thus its probability does not appear in these expres-
sions) The loss event shown in Fig. (8 has the raté (1
The equation foxy, is obtained by exchanging labels 1 and — p)/2][v/(1— po)]?; the rate for the event in which the par-
2,5 and 6, and\ andB in the above. Finally, for state 5 one ticle moves perpendicular to the drive is (1/d)(1— po)1°.
finds If we let n represent the mean number of particles in the
branch, then combining the gain and loss terms we find

, (A10) dn 11-2 1-2pp) 2
_ Po m Po

where vi=1—p; (i=A or B), s;=(qo+qq)/va, ands,
=(got+Qs)/vg. A similar analysis yields

dos__(d: s
at & VA Pa

with the corresponding equation fgg given by interchang-
ing labels as before. Notice thptappears in none of these
equations, i.e., the 4-site approximation is also insensitive td@he densitypg for which dn/dt=0 is interpreted as the sta-

the nonequilibrium drive. tionary density near the branch tip.
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